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Bringing Diversity from Diffusion Models to Semantic-Guided Face Asset
Generation
ANONYMOUS AUTHOR(S)

(a) (b) (c)

Fig. 1. We propose a high-quality, novel semantic controllable 3D face assets generator. This allows users to create customized avatars with a full spectrum of
assets for realistic rendering. (a) User-defined semantic labels. (b) Avatars generated and rendered using all the assets. Users can generate multiple avatars
and select their preferred subject. (c) Our model also supports texture space and geometry space editing, and offers a handcrafted accessory database (e.g.,
hairstyles, hats, glasses) for users to choose from.

Digital modeling and reconstruction of human faces serve various applica-
tions. However, its availability is often hindered by the requirements of data
capturing devices, manual labor, and suitable actors. This situation restricts
the diversity, expressiveness, and control over the resulting models. This
work aims to demonstrate that a semantically controllable generative net-
work can provide enhanced control over the digital face modeling process.
To enhance diversity beyond the limited human faces scanned in a controlled
setting, we introduce a novel data generation pipeline that creates a high-
quality 3D face database using a pre-trained diffusion model. Our proposed
normalization module converts synthesized data from the diffusion model
into high-quality scanned data. Using the 44,000 face models we obtained, we
further developed an efficient GAN-based generator. This generator accepts
semantic attributes as input, and generates geometry and albedo. It also
allows continuous post-editing of attributes in the latent space. Our asset
refinement component subsequently creates physically-based facial assets.
We introduce a comprehensive system designed for creating and editing
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high-quality face assets. Our proposed model has undergone extensive ex-
periment, comparison and evaluation. We also integrate everything into a
web-based interactive tool. We aim to make this tool publicly available with
the release of the paper.
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1 INTRODUCTION
Creating realistic 3D human faces has been a long-standing goal
in both the digital industry and academia. Differently from a 2D
portrait, 3D face assets contain detailed information on skin tex-
ture, facial geometry, and materials in order to be applicable in the
physically based rendering (PBR) pipeline. The demands for them
are rapidly growing in many of today’s digital industries - gaming,
movie, teleconference, and AR/VR, to list a few. However, tradition-
ally, creating such an asset in modern industrial practices requires
a time-consuming process from professional artists and, in the case
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of 3D scans, a meticulously calibrated facial capture studio. As of
today, high-quality 3D face assets are still very costly to create.

Naturally, many past academia and industry, reasearch and engi-
neering efforts have been made to automatize the creation of high
quality 3D human faces, in a hope to make this technology more
accessible to small studios and individuals. The scarcity of available
face asset dataset, however, posts major challenges to even the cur-
rent state-of-the-art face generation models. Industrial toolkits such
as the MetaHuman [Fang et al. 2021], for example, are based on
preset face assets that restrict the modeling capabilities to discrete
data points and necessitates mannual editing with professional artist
knowledge. Conventional 3D Morphable Models (3DMMs) [Booth
et al. 2018; Cao et al. 2014; Li et al. 2017; Paysan et al. 2009] and
learning-based methods [Li et al. 2020b; Yang et al. 2020; Zhang
et al. 2023a] have two main limitations: they struggle to effectively
integrate textures with underlying geometry, and their parametric
spaces fail to capture the full spectrum of human facial geome-
try [Liu et al. 2022]. Additionally, these models lack robust semantic
and attribute controls for generation.

The issue of data scarcity becomesmore pronouncedwhen consid-
ering modeling the diverse distribution of not just facial geometries,
but also facial textures that encode variations of skin tone, freckles,
wrinkles and even pores, etc. In DreamFace [Zhang et al. 2023a], a
highly relevant work to ours, the proposed model has been shown to
create 3D face assets with high quality, but we observe that the diver-
sity of the synthesized textures are limited and biased to Asian skin
due to the database bias (over 90% of FaceScape [Yang et al. 2020]
is Asian), as only 618 textures are available for them to fine-tune
a diffusion model, which we believe is insufficient. While editing
features like tattoos and makeup can be achieved using a pre-trained
texture LDMwith prompts, this approach only allows for single-pass
editing without precise control and does not support continuous
modifications. Increasing texture diversity of synthesized digital hu-
mans is a key motivation under many recent 3D generative models
that leverage the vision-language model CLIP [Radford et al. 2021]
(as seen in AvatarClip [Hong et al. 2022]) or large diffusion model
(as seen in DreamAvatar [Cao et al. 2023]) as guidance. As CLIP
and many large diffusion models learn from in-the-wild data that is
larger in size by some orders of magnitude, knowledge distillation
from them towards digital human generation has been shown effec-
tive, particularly in the much increased diversity of the generated
textures. In the more general domain, LucidDreamer [Liang et al.
2023] addresses this issue by introducing Interval Score Matching
(ISM), which produces high-quality 3D models with more details
and better multi-view consistency. However, 3D face generated from
the above methods often contain artifacts and incomplete assets,
and are not in a format readily usable for animation and rendering.
Additionally, the diffusion process remains slow.

Our efforts in face asset generation similarly aim to address the
data limitation challenge, by leveraging the expressive power of
a large diffusion model to diversely synthesize these assets. How-
ever, we have added three key design layers that distinguish our
framework from previous 3D face generation models and bridge the
quality gap between scanned high-quality data and mass-generated
synthetic data: 1) UV textures estimated from diffusion-generated
portraits is by itself incomplete and of arbitrary shading, which are

adapted poorly to the PBR pipeline. We devise a novel method to
process these reconstructed UV textures through texture completion
and a normalization step that produces clean, complete albedo
maps from the raw textures. 2)We additionally take careful consid-
erations in supporting meaningful semantic control and editing
of the generated 3D faces. While the semantic labels are extracted
from a pretrained text-guided diffusion model, we propose several
designs that greatly improve our final model’s ability to both con-
trol and edit its generated faces based on a certain facial attributes,
when compared to the previous works that also incorporated this
feature [Wu et al. 2023; Zhang et al. 2023a; Zhou et al. 2024]. The
first step taken is to formulate the semantic attributes with the de-
mographic properties: ethnicity, gender, and age. This circumvents
the ambiguity of using a general text prompt and language model
to interpret user inputs and provides more accurate control. The
second step replaces the common practices of conditioning the at-
tributes in generation with a disentangled framework based on
the generative adversarial network (GAN) [Goodfellow et al. 2014a].
In this framework, a two-step adversarial training scheme, extended
from [Xiang et al. 2021], is designed to learn an encoder that extracts
unlabeled information (e.g. identity), and a generator that produces
semantically accurate image from labels and the unlabeled informa-
tion. This design not only circumvents the difficulty of inversion
with a diffusion model, but also is validated by experiments (see
Figure 13 and results in supplementary video) to be more effective in
preserving the identity of the face image that is being edited. 3) Last
but not least, efficiency is a key factor in measuring the accessibility
of a face asset generation model. While traditional approaches that
scans, reconstructs and cleans up a captured face may take days
to produce a complete face asset [LeGendre et al. 2018], recent AI-
based methods [Liu et al. 2022; Zhang et al. 2023a; Zhou et al. 2024]
have greatly accelerated this process. Controlled 3D face generation
by sampling from a latent diffusion model is typically slow due to
its iterative nature. By distilling information to a GAN network, our
generation model achieves a drastic speed up in generating shape
and albedo (0.014s vs. 40s under a single Nvidia A6000 GPU).
Our training pipeline consists of two major stages. The first

stage leverages a image-based diffusion network and a 3D face
reconstruction network to create a dataset of diverse, high-quality
3D face assets. As the direct image output of the diffusion network
contains lighting and other external visual effects, albedo maps are
computed from a proposed texture normalization algorithm. In addi-
tion, we apply a sanity check to ensure quality and discard any data
with artifacts or mismatched labels, and convert the conditioning
text used to generate the data into three controlling attributes: age,
gender, and ethnicity. This process resulted in a dataset of 44k set of
3D face models. The second stage extends from DisUnknown [Xi-
ang et al. 2021] to train a GANwith the processed training data from
the first stage. As described, this stage produces the final model that
generates 3D face assets consisting of 4k geometry, albedo, specular
and displacement maps in the UV space. Thanks to training under
a disentanglement objective, the flexible model can either create
3D assets from an attribute description (“generate a 40 years-old,
Hispanic male”), or perform inversion on a given image and subse-
quently edit and reconstruct a 3D asset from the image, based on
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an attribute description (“turn this face photo into a 3D face of a 40
years-old, Hispanic male, without losing their identity”).
We summarize our contributions as follow:

• We’ve introduced a comprehensive, practical and novel frame-
work for generating high-quality face assets. This system
uses user-defined semantics and attributes to create PBR-
based face assets, including base geometry, albedo, specular,
and displacement maps, as well as secondary assets such
as eyeballs, teeth, and gums. The system also allows for
post-generation editing in both geometry and texture, while
preserving identity. The generated face avatars can be seam-
lessly integrated into downstream applications for rendering
and animation. Additionally, we’ve developed an interactive
web UI for users to explore these features.

• We have developed a large, high-quality 3D face database
containing 44𝐾 albedo/geometry pairs, complete with age,
gender, and ethnicity labels. This database exemplifies an
effective way to use a pre-trained diffusion model in an
industry production pipeline.

• We also tackled the challenging problem of domain transfer
with unbalanced data amounts in two domains. Our texture
normalization framework transfers 44,000 unconstrained
images into a domain containing 200 images. This allows
us to combine the diversity of one domain with the quality
from another. This could inspire research in this field.

2 RELATED WORK

2.1 3D Face Morphable Model
The 3DMorphableModel (3DMM), as the core component of conven-
tional 3D face generation, was first introduced in [Blanz and Vetter
1999] as a compact representation of face models in parametric
space. Since then, it has been extensively applied in face recogni-
tion [Paysan et al. 2009], face reconstruction [Bas et al. 2016; Gecer
et al. 2019; Thies et al. 2016], and avatar creation [Ghafourzadeh
et al. 2020; Li et al. 2020c; Nagano et al. 2018]. A comprehensive
overview of 3DMM is provided in [Egger et al. 2020]. Efforts have
been made to improve the expressiveness, quality, and parameteri-
zation capability of 3DMM over the past 20 years.
Previous work [Booth et al. 2016; Cao et al. 2014; Li et al. 2017;

Paysan et al. 2009] reduced the cost and labor required for data
acquisition and registration. [Paysan et al. 2009] introduced the
first publicly available 3DMM, while [Booth et al. 2018] developed
a more diverse linear model using approximately 10,000 scans. For
expression modeling, blendshapes were introduced to a bilinear
model [Cao et al. 2014; Li et al. 2017]. Deep learning methods have
since enhanced 3DMM capabilities, enabling more diverse and ro-
bust representations [Abrevaya et al. 2018; Chandran et al. 2020; Dai
et al. 2020; Li et al. 2020a; Ranjan et al. 2018; Smith et al. 2020]. [Li
et al. 2020d; Yang et al. 2020] constructed high-quality 3DMM with
pore-level resolution data, and [Yang et al. 2020] provided a large-
scale textured 3D face dataset that represents geometry through
both rough shapes and detailed displacement maps. [Li et al. 2020d]
developed a non-linear 3DMM using high-resolution face scans,
incorporating material attributes for physically-based rendering.

However, challenges remain in expensive data collection and lim-
ited diversity.

When applied to 3D face generation, conventional 3DMMs such
as [Booth et al. 2018; Cao et al. 2014; Li et al. 2017; Paysan et al. 2009]
offer parameterized models for face modeling. However, they lack
explicit control over individual attributes and struggle to effectively
integrate textures with underlying geometry. This limitation re-
stricts their usefulness in applications requiring customized human
face generation. While learning-based 3DMMs like [Li et al. 2020b;
Yang et al. 2020] enable joint modeling of texture and geometry,
these models still cannot provide adequate semantic or attribute
control during generation.

2.2 Text-to-3D Face
Advancements in text-to-3D avatar generation [Hong et al. 2022;
Michel et al. 2022;Wu et al. 2023] have leveraged the vision-language
model CLIP [Radford et al. 2021] to map natural language descrip-
tions into latent spaces, enabling the generation of 2D images that
are then converted into 3D avatars. While this approach allows
attribute and semantic control, it often suffers from texture artifacts
and inconsistent multi-view outputs. Beyond avatar generation,
text-to-3D content creation in general has rapidly evolved, with
recent works [Cao et al. 2023; Chen et al. 2023a; Lin et al. 2023; Met-
zer et al. 2023; Poole et al. 2022] excelling at generating diverse 3D
models from text. These methods employ pre-trained text-to-image
diffusion models as priors to guide the training of parameterized
3D models, ensuring multi-view consistency and text alignment
through Score Distillation Sampling (SDS). However, SDS encour-
ages average-seeking behaviors in the 3D representation, leading to
over-smoothed results. LucidDreamer [Liang et al. 2023] addresses
this issue with Interval Score Matching (ISM), improving detail qual-
ity, but their method remains computationally expensive — taking
approximately 36 minutes to generate a 3D model.
Among existing methods, DreamFace [Zhang et al. 2023a] has

made significant progress in generating high-quality face avatars. It
separately trains a geometry and appearance model, fine-tuning a
generic diffusionmodel with 618 textures from sources like FaceScape
[Yang et al. 2020] and 3DScanStore [3DScanStore 2023]. However,
several limitations exist:1.) Limited geometric diversity – Geometry
is initialized from a 3DMM with only 100 bases. 2.) Insufficient and
biased texture data – 618 textures are inadequate for fine-tuning a
diffusionmodel trained on vast in-the-wild datasets, and FaceScape’s
90% Asian demographic introduces bias. 3.) Decoupled geometry
and texture generation – Ignoring their correlation, as highlighted
in [Li et al. 2020b]. 4.) Challenging inversion in diffusion models –
Editing (e.g., tattoos, makeup) is constrained to one-pass modifica-
tions without precise control. 5.) Lack of quality control – Outputs
are inconsistent, and quality depends heavily on user prompts.
Inspired by DreamFusion [Poole et al. 2022] and LucidDreamer

[Liang et al. 2023], we aim to refine generative 3D generation. While
these models generate 3D faces from text, they often produce arti-
facts and require manual quality control, making them unsuitable
for direct application. Nonetheless, pre-trained image diffusion mod-
els, trained on large datasets, naturally enhance diversity, provide
annotations and offer great accessibility. Our approach harnesses
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the rich priors of image diffusion models to improve quality, control,
and usability in 3D avatar generation.

2.3 Semantic Face Generation and Manipulation
Generative Adversarial Networks (GANs), pioneered by [Goodfel-
low et al. 2014b], have been well studied in the setting of semantic
editing. A key challenge lies in achieving semantic and disentangled
control in generative models, e.g., randomly changing one specific
attribute while preserving the other attributes. Efforts to interpolate
in the latent space for smooth output variation have been explored
by [Laine 2018; Shao et al. 2018], while recent research focuses
on disentangling the latent space for semantic control [Härkönen
et al. 2020; Jiang et al. 2021; Shen et al. 2020; Shen and Zhou 2020;
Zheng et al. 2021]. Observations of vector arithmetic in latent space
by [Radford et al. 2016; Upchurch et al. 2017] have led to unsuper-
vised disentanglement methods. Semi-supervised methods apply
principal component analysis for attribute identification [Härkönen
et al. 2020], while supervised methods use labeled data for latent
space factorization [Kowalski et al. 2020; Shen et al. 2020]. Alterna-
tive approaches utilize 3DMM for semantic control over pre-trained
StyleGAN latent space [Tewari et al. 2020a; Wang et al. 2022] or
train unsupervised data with labels from attribute classifiers [Kho-
dadadeh et al. 2022]. Also, to transfer such controllability to real
image editing, the GAN inversion methods [Abdal et al. 2019; Tewari
et al. 2020b; Zhu et al. 2020] propose to map the real image into the
latent space and thus can manipulate real images.

2.4 Facial Texture Synthesis
3D facial texture synthesis has evolved from traditional geomet-
ric and photometric methods to advanced neural network-based
techniques. Traditional photometric methods, relying on polarized
light to capture skin reflectance properties, laid the groundwork for
detailed texture mapping [Debevec et al. 2000; Ghosh et al. 2011].
Innovations then made high-quality, single-shot captures possible
for both facial geometry and reflectance [Lattas et al. 2022; Riviere
et al. 2020].

The advent of deep learning has revolutionized texture synthesis.
Neural networks are employed for photorealistic textures, combin-
ing low and high-frequency methods [Chen et al. 2019; Huynh et al.
2018; Saito et al. 2017; Yamaguchi et al. 2018]. Generative adver-
sarial networks (GANs) have further enhanced the generation of
detailed and realistic textures, using patch-based approaches and
focusing on physical texture properties like diffuse and specular
albedos [Dib et al. 2021; Gecer et al. 2019; Lattas et al. 2020, 2023,
2021]. Recent developments employ the denoising diffusion prob-
abilistic models and text inputs for texture creation [Zhang et al.
2023a]. Super-resolution techniques enable the generation of high-
resolution textures from lower-resolution inputs, enhancing detail
of mesh without altering its geometry [Chen et al. 2023b].
These advancements underscore the goal towards both visual

realism and adherence to the principles of physical-based render-
ing, which guarantees accurate material properties under diverse
lighting conditions.

3 METHOD
Our goal is to create a 3D avatar synthesis model that uses attribute
prompts (ethnicity, gender and age) to produce high-quality 3D face
assets, including 3D geometry in the form of a position map and
detailed textures in the forms of albedo, specular and displacement
maps. To achieve our goal, we start by constructing a large, high-
quality 3D face dataset using a pre-trained diffusion model. We
introduce a unique framework in Section 3.1 to ensure the collected
data are clean and complete with corresponding labels. Then, a
dedicated generative network, as detailed in Section 3.2, is trained
using these pairs of facial data to create the basic geometries and
albedo textures. Lastly, we apply post-processing, as described in
Section 3.3, to refine these basic assets and generate PBR assets.

3.1 Data Preparation
We leverage the rich priors of a large diffusion model by using
it to synthesize a dataset of attribute-controlled faces. However,
existing large diffusion model is limited to generating 2D portraits,
does not provide identity control, and the generated portraits may
not conform to the provided labels. This section details four stages
needed to create 3D assets (shape and albedo texture) from the raw
diffusion-generated 2D portraits. First, we use the pre-trained latent
diffusion models [Rombach et al. 2022; Zhang et al. 2023b] to create
a set of portraits based on semantic text and geometric information.
Next, these portraits are projected onto the UV space associated with
the topology of the underlying 3D surface, yielding an incomplete
UV-space texture, and the geometries are refined with a single-
image 3D reconstruction network. In the third stage, the incomplete
UV-space textures are refined using a texture completion algorithm,
and the underlying geometry is optimized to ensure consistency
with the synthesized facial appearances. Lastly, we introduce a
novel normalization network, trained on data from two domains - a
high-quality scanned database and the generated textures dataset.
It converts unconstrained textures into clean albedo, similar to the
scanned data domain. This pipeline efficiently creates a high-quality,
diverse, and realistic 3D facial avatar dataset, including 44𝐾 subjects,
suitable for subsequent generator training. The data generation
pipeline is illustrated in Figure 2.

3.1.1 Portraits Generation using Diffusion Models. We utilize pre-
trained checkpoints from Stable Diffusion v1.5 [Rombach et al. 2022]
and ControlNet [Zhang et al. 2023b] (pretrained on normal maps)
to generate portraits with precise control over semantic facial at-
tributes and geometric information. To avoid ambiguity caused by
the language model and ensure precise control, we define three
major demographic attributes that contribute most to human ap-
pearances and shapes: ethnicity, gender, and age. We also include
generic prompts for illumination and quality control, like resolution
and framing. For example, "East Asian female age 20" is one set
of demographic attribute combinations. Age groups span from 15
to 75 years old. For gender, we use the labels male, female, and
unisex. We also consider ethnicity/race and geographic location, re-
sulting in 14 distinct categories: East Asian, Southeast Asian, Middle
Eastern, Caucasian, Germanic, Celtic, Slavic, Romance, Australian,
Native Americans, Aboriginal, Pacific Islander, and African. To pro-
vide guidance to the generation, the pretrained ControlNet is used
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Initial Geometries

Caucasion
Female
Age 35
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Fig. 2. Overview of the proposed dataset preparation method: Portraits are initially synthesized using a latent diffusion model that is conditioned by semantic
facial attributes and frontal view normal maps. A pre-trained face reconstruction model is then applied to these portraits to extract modified geometries in the
form of position maps. Textures are completed by blending the projected portraits with physically-based rendered texture maps from the scanning database.

(a)

(b)

Australian Female Age 35 South Asian Male Age 18 East Asian Male Age 55

Fig. 3. Two types of 3D human face data. (a) From left to right: the template
model used for registering all data resources, sample of Light Stage data,
and Triplegangers data. (b) Samples of semantic attributes and the resulting
2D portraits from LDM.

to condition the diffusion process on a normal map, rendered at the
front view from a 3D face randomly sampled from a scanned dataset.
3D geometry is obtained by using a single-view face reconstruction
model, a variant of ReFA [Liu et al. 2022], on the 2D portraits. In

total, 65k portraits with 3D geometry are created from these steps.
Ethnicity is uniformly sampled from 14 categories. As for gender,
the distribution consists of 45% male, 45% female, and 10% unisex.
Age is uniformly sampled from the following groups: 15, 18, 20, 22,
25, 28, 30, 35, 40, 45, 55, 65, and 75.

3.1.2 Texture Completion. With the corresponding geometries, the
2D portraits can be directly resampled to the corresponding UV
space. Figure 2 illustrates the projected portraits. However, since
only the frontal part of the face is visible, the missing regions in the
boundary of the UV maps need to be completed. We first search for
the nearest neighbor with the highest similarity to the projected
portrait in a synthesized texture database, using Peak Signal-to-
Noise Ratio (PSNR) as our measure. This database is derived from
our scanned database, and we use it to find a reference to fill missing
regions. It consists of UV-space images rendered using geometry
and textures from the scanned database, combined with randomized
lighting, as demonstrated in the PBR texture maps shown in Figure 2.
The complete UV-space texture is then obtained by blending the
projected portraits and texture maps with the pyramid blending
algorithm [Burt and Adelson 1983]. Finally, a sanity check is applied
to filter out results with artifacts to maintain high data quality.
The filtering step keeps approximately 44𝐾 UV textures from the
original 65𝐾 portraits. However, these textures still contain baked-in
lighting, which are not part of our desired clean albedo. Therefore,
a further normalization step is proposed in the next section.
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Fig. 4. Examples of training data. From left to right in each example are:
the input attribute (semantic and skin tone guide), portrait, map before
normalization, normalized texture map, images rendered wo/w the post-
processing. (Section 3.1.3).

3.1.3 Texture Data Normalization. The goal of this step is to remove
lighting and other external visual effects, such as makeup, facial
hair, glasses, and shadows, from the UV textures created in the last
step. The normalized texture can be considered as clean albedo map
that is a part of the output 3D face asset. While FFHQ-UV [Bai
et al. 2023] attempts to normalize this data into clean albedo in UV
form, it struggles to fully preserve identities and attributes. We pose
texture normalization in this context as a domain transfer problem
from the source domain, which consists of synthetic textures under
different lighting as shown in Figure 3 (b), to the target domain,
which consists of clean albedo as shown in Figure 3 (a). Since the
target domain contains only collected 200 identities while the source
domain containing around 44K identities, a convolutional image-to-
image translation model directly trained on the whole image would
face a high risk of overfitting. The following text describes several
designs to mitigate this issue.

First, we introduce an assumption that lighting affects appearance
of the face approximately uniformly in a reasonably-sized patch.
Therefore we divide an input image into a 64×64 grid of patches and
assign a spatially varying factor 𝜃 to each grid corners to account for
factors that are independent of albedo. 𝜃 is bilinearly interpolated in
the interior of each patch. Under this formulation, image translation

is formulated as a function 𝑓 (𝑟, 𝑔, 𝑏;𝜃 ) parameterized by an mlp
network that takes the image as input and translates each pixel
independently based on the spatially-varying factor 𝜃 . However,
the image translation is preceded by a patch parameter estimation
network, a convolutional network that takes the image as input and
computes 𝜃 at patch corners. Effects such as subsurface scattering
and inaccuracies due to the non-physical nature of the input images
can also be handled by the spatial variation of 𝜃 and do not need to
be considered separately.
In addition, different combinations of albedo and lighting can

result in the same observed color, so without knowing the true
lighting, the albedo is ambiguous. To remove this ambiguity, we
compute a skin color by taking the average pixel value overmanually
selected flat regions of the input face (cheeks and forehead), which
is equivalent to a masked average of the image 𝐶 (𝑥). This value is
then provided to the patch parameter estimation network explicitly.
Together, the patch parameter estimation network and the mlp
translation network are termed the normalization model𝑁 (𝑥,𝐶 (𝑥)),
which is visualized in Figure 5.

The loss function for training the texture normalization model is
constructed as:

LN-rec = E
𝑥∈𝑋scan

[
∥𝑁 (𝑥,𝐶 (𝑥)) − 𝑥 ∥2

]
, (1)

where 𝑋scan be the set of scanned albedo texture. During training,
we additionally augment the input with albedo images that do not
contain lighting and optimize the network to produce identical
output to the input in this situation.
The overall training procedure is shown in Figure 6. As com-

monly done in unpaired image-to-image translation, a patch-based
discriminator is employed to ensure that the translated image is in
the target domain, trained with the binary cross entropy loss. For
adversarial training the distribution of skin color of the normalized
synthesized textures is optimized to match that of the scanned tex-
tures, so when normalizing a synthesized texture, the skin color is
drawn randomly from the set of skin colors of the scanned textures.
Let 𝐷N be the discriminator and 𝑋syn the set of synthetic textures.
The Discriminator’s loss and the normalization model’s adversarial
loss are:

LN-real = E
𝑥∈𝑋scan

[
− ln𝐷N (𝑥)

]
, (2)

LN-fake = E
𝑥1∈𝑋scan
𝑥2∈𝑋syn

[
− ln(1 − 𝐷N (𝑁 (𝑥2,𝐶 (𝑥1))))

]
, (3)

LN-adv = E
𝑥1∈𝑋scan
𝑥2∈𝑋syn

[
− ln𝐷N (𝑁 (𝑥2,𝐶 (𝑥1)))

]
. (4)

Additionally, we need to ensure that when normalizing a syn-
thesized texture, the output does have the same skin color as the
provided skin color:

Lcolor = E
𝑥1∈𝑋scan
𝑥2∈𝑋syn

[
∥𝐶 (𝑁 (𝑥2,𝐶 (𝑥1))) −𝐶 (𝑥1)∥2

]
. (5)

𝑁 and 𝐷N are then trained using:
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Fig. 6. Diagram of the normalization network training pipeline.

min
𝐷N

LN-real + LN-fake, (6)

min
𝑁

𝜆N-recLN-rec + 𝜆colorLcolor + 𝜆N-advLN-adv . (7)

3.2 Base Geometry and Albedo Generation
With the prepared dataset, we train a geometry and albedo tex-
ture generation network in which each attribute of interest can be
adjusted independently. In addition, the network is trained to be
capable of image inversion and can disentangle identity information

from attribute controls, such that it can be used as an attribute edi-
tor for a fixed identity. Our method follows the two-step approach
in [Xiang et al. 2021]. The overall procedure is shown in Figure 7.

3.2.1 Learning unlabeled information. In the first step, a GAN with
an autoencoder 𝐸, a generator𝐺1 and a discriminator𝐷𝐸 is designed
to disentangle unlabeled information from the labels (in our case,
the gender, age and ethnicity attributes). 𝐸 is first used to extracts
unlabeled information from the images and discards labeled infor-
mation . The code computed by the encoder therefore describes
information that is independent of the face attributes (e.g. identity
information).
How can 𝐸 be trained to disentangle information from attribute

labels? If it does discard the labeled information completely, then the
conditional distribution of the code, on any value of the attributes
should be the same. Based on this observation, we can achieve label
disentanglement by using an adversarial classifier that classifies the
encoder’s output by their label, and the encoder 𝐸 is trained to make
the classifier fail. However, while the conditional distribution of
the code is learned to be the same given any label, this distribution
has no closed form and cannot be easily sampled. We would like
to generate new images, so this conditional distribution must be
identical to some known, simple prior. So, different from [Xiang
et al. 2021], the code classifier is replaced with a conditional code
discriminator.
Given attribute values as conditions, the code discriminator 𝐷E

learns to distinguish between the prior distribution and the codes
computed by the encoder. We choose the normal distribution as the
prior. Let 𝑙 (𝑥) be the attribute label of a training image 𝑥 , and 𝑋 be
the training dataset, which are pairs of albedo and geometry:

LE-real = E
𝑥∈𝑋

𝑧∼𝑝 (𝑧 )

[
− ln𝐷E (𝑧, 𝑙 (𝑥))

]
, (8)

LE-fake = E
𝑥∈𝑋

[
− ln(1 − 𝐷E (𝐸 (𝑥), 𝑙 (𝑥)))

]
, (9)

LE-adv = E
𝑥∈𝑋

[
− ln𝐷E (𝐸 (𝑥), 𝑙 (𝑥))

]
. (10)

𝐸 will also need to retain all unlabeled information. This is achieved
using a reconstruction loss. It is worth noting that the first-step gen-
erator will not be used as the generator in our finished texture
generation model, as it only assists in training the encoder. In addi-
tion, 𝐺1 takes the labels 𝑙 (𝑥) as an input, since labeled information
is removed from the codes 𝐸 (𝑥). The overall reconstruction loss is:

LE-rec = E
𝑥∈𝑋

[
∥𝐺1 (𝐸 (𝑥), 𝑙 (𝑥)) − 𝑥 ∥2

]
. (11)

𝐸, 𝐺1 and 𝐷E are then trained using:

min
𝐷E

LE-real + LE-fake, (12)

min
𝐸,𝐺1

𝜆E-recLE-rec + 𝜆E-advLE-adv . (13)

3.2.2 Training the label-conditioned generator. As mentioned pre-
viously, the trained 𝐺1 (𝐸 (𝑥), 𝑙 (𝑥)) from step 1 does not model the
marginal distribution of the attribute labels as it requires unlabeled
information. In the second step, a separate conditional generator

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: April 2025.



799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

8 • Anon.

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

Normalized image

Labels:
"Male"

"Age 25"
"East Asian"

Labels:
"Male"

"Age 25"
"East Asian"

Reconstructeded
image

Reconstruction loss

LE-rec

Discriminator
real loss
LE-real

Discriminator
fake/adversarial loss
LE-fake LE-adv

E E

DG

DG

DG

G2

G1

G1DE

DE

Normalized image

Generated image

(frozen)

(frozen)

Convolutions

Concatenation along channels

Internal structure of

Output

Image

Unlabeled
code

Labels

MLP

Discriminator
fake/adversarial loss
LG-fake LG-adv

p(z)

p(z)

Step 1
(Adversarial autoencoder)

Step 2
(Conditional GAN)

Discriminator
real loss
LG-real

Fig. 7. Diagram of the generator training pipeline.

𝐺2 (𝑧, 𝑙 (𝑥)) is trained to generate base geometry and albedo maps
from attributes and a sampled random code 𝑧. In this step, the trained
autoencoder 𝐸 is frozen. A new discriminator 𝐷𝐺 receives the un-
labeled code 𝐸 (𝑥) as a condition and discriminates whether the
generated image has preserved the unlabeled information provided
by the code. Specifically, a “real” sample is a triplet consisting of
a training image 𝑥 , its code 𝐸 (𝑥) and its label 𝑙 (𝑥), while a “fake”
sample is a triplet consisting of a random code 𝑧, random labels 𝑙 (𝑥)
which are produced by taking the labels of a random training image,
and 𝐺2 (𝑧, 𝑙 (𝑥)), the image generated using the code and the labels:

LG-real = E
𝑥∈𝑋

[
− ln𝐷G (𝑥, 𝐸 (𝑥), 𝑙 (𝑥))

]
, (14)

LG-fake = E
𝑥∈𝑋

𝑧∼𝑝 (𝑧 )

[
− ln(1 − 𝐷G (𝐺2 (𝑧, 𝑙 (𝑥)), 𝑧, 𝑙 (𝑥)))

]
, (15)

LG-adv = E
𝑥∈𝑋

𝑧∼𝑝 (𝑧 )

[
− ln𝐷G (𝐺2 (𝑧, 𝑙 (𝑥)), 𝑧, 𝑙 (𝑥))

]
, (16)

and the training procedure of the second step is a plain GAN:

min
𝐷G

LG-real + LG-fake, (17)

min
𝐺2

LG-adv. (18)

Through experiments, we noticed that although concatenating
the one-hot attribute labels to the fully connected part of the dis-
criminator worked as intended, incorporating the unlabeled code
in the same way did not give satisfactory results. We speculate the
difficulty lies in the observation that the unlabeled code is much
longer than the attribute labels and has a strong spatial structure
which the discriminator had to learn from scratch. Therefore, we
help the discriminator by generating an image from the label and
code it receives using the first-step generator 𝐺1 and concatenat-
ing its output with the input image, so that the spatial structure is

provided by the condition image and need not be re-learned. The
detailed architecture of our discriminator is shown in the inset in
Figure 7. 𝐺1 remains frozen and is not updated along with other
parameters of the discriminator.

3.3 Asset Refinement
A complete set of textures for physically-based rendering includes
more than just albedo maps: it also comprises specular and displace-
ment maps. However, our generated albedo and geometry, which are
relatively coarse with 1K vertices and 1K resolution albedo maps,
lack this information. In this section, we describe a refinement
method that enhances our output by adding the missing assets and
improving the resolution. This method includes three components.

1) Super-resolution: we train an super-resolution network [Chen
et al. 2023b] to increase the 1K albedo to a 4K resolution with high-
frequency details. This network not only enhances the clarity of the
albedo but also recovers skin details that are lost in 1K resolution.

2) Specular and displacementmaps: We train a translation net-
work [Liang et al. 2021] that infers plausible specular and displace-
ment maps from the 4K albedo obtained from the super-resolution
network. Our model is trained using our high-quality scanned
dataset. Specifically, we convert the albedo map into Lab color space
and use only the L channel as input to train the displacement map
network. The L channel encodes structure and illumination, while
the ab channels encode color. This approach eliminates the influ-
ence of skin color, as the high-frequency geometry interpreted in
displacement correlates only with shape, not skin color.

3) Secondary assets: As the final step, we integrate the missing
secondary assets (such as the eyeball, teeth, and gum) and predefined
Blendshapes into the obtained base mesh to prepare it for animation.
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Fig. 8. Results of the single-view face reconstruction model on the portrait,
(a) the initial geometry (b) the generated portrait using the initial geometry,
(c) the refined geometry with single-view face reconstruction.

4 EXPERIMENTS

4.1 Implementation Details
Portraits Generation. To generate the portraits Figure 2, we use the

pretrained Stable Diffusion v1.5 [Rombach et al. 2022] as base LDM
model and use the ControlNet checkpoint pre-trained on normal
maps [Zhang 2023] to add conditional controls for our frontal view
normal map. The sampling method is DDIM with 40 time steps.
Classifier-Free Guidance [Ho and Salimans 2022] scale is 9.0. The
output portraits resolution from the LDM model is 1024 × 1024.

Single-View Face Reconstruction. In this paper, we perform single
view 3D face reconstruction to update geometry. We keep the cam-
era fixed during normal map rendering, which is used as input for
the diffusion model. The resulting portraits thus have a fixed camera
pose, P ∈ R3×4. To train the model, we rendered around 100𝐾 syn-
thetic frontal view portraits under different illuminations by using
assets in our 3D high quality database. We combined these with
captured multi-view real data. A variant of ReFA [Liu et al. 2022]
was used as the baseline to train the model, with the input modified
from multi-view to single view. The camera optimization was kept
fixed during training, as we had the ground truth P ∈ R3×4, so in
each network step only position mapM get updated. The texture
inference step is also skipped. All the training of the reconstruction
model is performed on NVIDIA A100 graphics cards. The network
parameters are randomly initialized and are trained using the Adam
optimizer for 120,000 iterations with a learning rate set to 3 × 10−4.
For the recurrent face geometry optimizer, we set the inference step
to𝑇 = 10, the grid resolution to 𝑟 = 3, the search radius to 𝑐 = 1mm.
An example of the refinement to the initial geometry is showed
in Figure 8, the refined geometry (c) more accurately matches the
portrait (b) compared to the initial geometry (a), with deeper-set
eyes that are correctly positioned, a mouth that is properly sized
and shaped, more correctly aligned cheekbones, and a chin that
reflects the correct depth and contour, resulting in an overall head
shape that aligns more closely with (b).

Texture Normalization. The Patch Parameter Estimation network
is a convolutional network, consisting of alternating kernel 3, stride
1 convolutions and kernel 4, stride 2 convolutions. The number of
output channels starts at 16 and doubles after each stride 2 layer.

Once the spatial size reduces to 64, the skin color code is broadcast
to each location, and two additional kernel 1, stride 1 layers are
added. The final layer, which outputs 𝜃 , has 8 output channels. The
Pixel Translation Network is an MLP with 6 layers and 64 features
in the hidden layers.

To ensure that the discriminator focuses on only the lighting, its
capacity is purposefully limited: it consists of an MLP with 6 layers
and 64 features in the hidden layers. It takes 16 × 16 patches as input
and first downsamples them to 4 × 4 so that the number of input
features is 4 × 4 × 3 = 48.

Generator. We adopt the StyleGAN2 [Karras et al. 2020] archi-
tecture for our generator as well as the convolution part of our
discriminator. We also adopt the gradient penalty, path penalty and
augmentation from its training procedure.

Performance. Our base geometry and albedo generation network
generates at 0.014 seconds per subject. For 1k to 4K albedo upsam-
pling, we trained a network [Chen et al. 2023b] on our high-quality
dataset, which takes 53 seconds to complete in average. We trained
two separate translation networks [Liang et al. 2021] for the specular
and displacementmaps and thewhole translation takes 71 seconds in
average. Utilizing these three types of networks, production-quality
face assets for an identity can be created in less than 3 minutes on
one Nvidia A6000 GPU.

4.2 Results
Qualitative Results of Generation. Figure 9 shows full assets of

16 identities along with rendered images, created from 8 distinct
semantic labels. For each row, the geometry, diffuse albedo map,
specular map, and displacement map are created from a set of at-
tributes and rendered under three different lighting conditions. In
each row, we display two randomly generated results that follow
the same input semantic attributes, yet represent different identities.
These results illustrate the diversity, quality, and effective semantic
control of our model.

Texture normalization. Figure 4 showcases the direct output of
our normalization network. It transfers the UV-space texture with
illumination baked-in into albedo textures while preserving the
identity of the input texture. We can further edit the skin tone as
shown in Figure 14. For a quantitative evaluation, we calculate the
Brightness Symmetry Error (BS Error) introduced by [Bai et al. 2023]
of different datasets as shown in Table 1. For the Facescape data,
we processed it using a method similar to [Li et al. 2020b] to obtain
texture data with the same topology. For FFHQ, we employed a
3DMM fitting method to obtain partial textures from the images
and then applied the blending described in Section 3.1.2 to complete
the textures around the central facial area.

Attribute Control. Figure 11 shows independent control of age
and gender in both texture and geometry. In each block, gender
varies within each column and age varies within each row, while
all other attributes remain fixed. Along the gender axis, we can see
that a masculine face generally displays sharper, more pronounced
features, including thicker eyebrows. Along the age axis, the most
notable difference is the prominence of wrinkles.
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Fig. 9. Results of generated face models. For the same semantic input in each row, we generate two face models. For each of the generated face model, we
show semantic labels, rendering results, PBR assets generated by the method, and rendering results under other two different lighting conditions.

Table 1. Quantitative evaluation on the illumination of the proposed UV-
texture dataset in terms of BS Error, where * denotes the dataset which is
captured under controlled conditions. Ours refers to FFHQ processed by
proposed normalization method to match Light Stage data.

Method Facescape* Light Stage* FFHQ Ours

BS Error ↓ 15.2595 4.8279 28.0723 5.8109

We also evaluate the accuracy of attribute control quantitatively.
For this purpose, we train a classifier for age, gender and ethnicity,
independent from the generator training process. The classifier is
trained on 85% of normalized data and tested on the other 15%.
We then generate a large number of samples using random codes
and attribute labels, and classify these generated samples using the
classifier. If the generator controls the attributes accurately, the
performance of the classifier should be similar on the test data and
on the generated samples. The accuracy (average of all classes) is
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Fig. 10. Zoom-in views of generated face models. Two different subjects are shown. Top: full facial renderings with highlighted regions. Bottom: close-ups
showing details of highlighted regions.

shown in Table 2, and the confusion matrix is shown in Figure 15.
The performance of the classifier on the dataset and the generated
samples are similar, and where they differ, the accuracy is generally
higher on the generated samples.
To compare the effectiveness of attribute control between our

trained generator and a generic diffusion model [Rombach et al.
2022], we perform age editing on the same subject using both meth-
ods, as shown in Figure 13. The portraits generated by the diffusion
model, which is the same as the one used in portraits generation,

are processed through our data preparation pipeline to obtain final
renderings. While diffusion models can achieve age modification
through prompt manipulation, our generator produces significantly
smoother transitions across age levels. In contrast, diffusion-based
results have abrupt feature changes between adjacent slices in the
figure. A more detailed comparison of transition smoothness can be
found in the supplementary video.
Figure 14 shows independent control of skin color. In particular,

we show the variation of skin color within two subjects, conditioned
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Fig. 11. Independent control of age and gender, both textures and geome-
tries are interpolated in two dimension (age and gender). Each row varies
gender from feminine to masculine, and each column increases age progres-
sively.

Table 2. Classification accuracy on the dataset and generated samples and
their difference.

race gender age

dataset 60.09% 84.72% 32.66%
generated 75.88% 91.93% 49.90%
difference +15.79% +7.21% +17.24%

on their respective ethnicity. We calculate the skin color from each
unnormalized texture using the method in [Thong et al. 2023] and
for each ethnicity the distribution of skin colors is modeled by a
normal distribution. The figure presents five skin color samples of
each subject, arranged from bright to dark.

Inversion and Editing. Figure 12 shows image inversion and edit-
ing. Images are first projected into the latent space of the generator
by finding the unlabeled code and labeled attributes that gener-
ates the closest image using optimization. Edited images are then
generated by modifying the labeled attributes while keeping the
unlabeled code unchanged.

Additionally, since all generated facial geometries share the same
topology with our high-quality dataset, generic facial geometric

Fig. 12. Examples of GAN inversion and editing of facial features. Each
subject is inverted from a real photo, thenmodified on the geometry—adding
a chin cleft (top) or reducing mouth size (bottom)—followed by age and
gender editing in the latent space of the genrator.

Ours Diffusion

Fig. 13. Age editing comparison between ourmethod and text-prompt-based
editing using Stable Diffusion [Rombach et al. 2022]. For each method, 20
ages ranging from young to old are uniformly sampled. Each generated face
contributes a vertical slice.

attributes editing such as add aging features Figure 11 can be done
with some predefined geometry offsets, and blendshapes can be
applied to animate the facial assets. For animation examples, please
refer to the video.

Comparison. We access the accuracy of attribute control of our
generator using CLIP score. We first build a text description of
the generated image data for our semantic attributes. We utilize
the same ethnicity, gender, and age groups as the attributes we de-
fined for generation to construct descriptors. Following the strategy
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Fig. 14. Skin color editing on two subjects. For each subject, skin tone is
modified from bright to dark while keeping identity and facial features
consistent.
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Fig. 15. Classification confusion matrix on the dataset and generated sam-
ples and their difference.

of [Zhang et al. 2023a], we form text input with the phrase “the real-
istic face of [DESCRIPTOR]”. After acquiring 5 sets of PBR assets for
each descriptor, we render 2500 test images. To calculate the score
of Describe3D [Wu et al. 2023], we synthesize facial images by gen-
erating the descriptors with the rules mentioned in their work and
used the same phrase as the input into CILP model. Subsequently,
we compute the average CLIP score from the ViT-B/16 and ViT-L/14
models. The result, shown in Table 3, highlights effectiveness of our
method in achieving semantic coherence between the generated
images and their corresponding text descriptions.

Figure 16 compares our system to DreamFace [Zhang et al. 2023a].
Our system generates real albedo, which reflects true skin color,

Table 3. Comparison of Methods

Method CLIP Score ↑
DreamFace [Zhang et al. 2023a] 0.291 ± 0.020
Describe3D [Wu et al. 2023] 0.284 ± 0.054
UltrAvatar [Zhou et al. 2024] 0.301 ± 0.023
Our Method 0.316 ± 0.042

whereas DreamFace only produces texture under evenly distributed
illumination. Also, our generated face model exhibits greater diver-
sity and more closely aligns with the user description as the training
dataset of DreamFace mainly consists of Asian people. Compared
to general text-to-3D methods like DreamFusion [Poole et al. 2022],
LucidDreamer [Liang et al. 2023] and TRELLIS [Xiang et al. 2024],
our method produces avatars with impressive detail and production-
level textures. DreamFusion creates clear structures, but misses finer
skin details. LucidDreamer and TRELLIS outputs vivid, detailed and
realistic faces, however with strong artifacts.
Figure 17 shows the results of texture normalization compared

to FFHQ-UV [Bai et al. 2023]. Our normalization results are closer
to the target albedo domain, with pure skin color and no lighting
baked-in (e.g., highlights). However, the normalized UV generated
by FFHQ-UV still retains some of the original illumination, which
cannot be used for high-end PBR-base shader as albedo.

User Study. We conduct a user study for the output of avatar gen-
eration methods among our proposed method, DreamFace [Zhang
et al. 2023a] and Describe3D [Wu et al. 2023]. 87 participants rate im-
ages synthesized using the corresponding methods in two aspects:
description consistency and photorealism. The outcomes in Fig-
ure 18 showcase our proposed method consistently outperforming
others in terms of description consistency and photorealism.

Interactive Avatar Creation System. To facilitate validating the
on-the-fly interactivity of the proposed method, a web application
using browser rendering technologies is created. Figure 19 demon-
strates the attributes editing function enabled by our method after
creation. Users are presented with options to specify "General Fa-
cial Structure" attributes such as age, ethnicity, and gender, and
"Detailed Facial Structure" features including the shape of the face,
nose, ears, chin, and more. Users can see the results in the viewport
and rotate the camera and light to inspect details of the generated
result. From the technical side, the application employs a front-end
system for rendering and a back-end system for providing services
and hosting the web pages. The front-end system uses the Unity
game engine [Unity Technologies 2022] and is built against the We-
bGL platform. All the generation requests regarding changes to age,
ethnicity, and gender are sent back to the back-end for processing
and returned to the front-end as asset files once ready. The mesh
object, albedo map, specular map, and displacement map are the
major art assets dynamically generated by our models and saved
on the cloud storage associated with an ID in our database for later
reference. Changes to other facial feature settings are handled lo-
cally on the browser, and no new assets need to be generated by the
server, so no significant delay is incurred at this stage to ensure an
interactive editing experience. During local interactive modification,
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Fig. 16. Comparison of our semantic face asset generation of (a) proposed method against (b) DreamFace[Zhang et al. 2023a] (c) DreamFusion[Poole et al.
2022] (d) LucidDreamer[Liang et al. 2023] (e) TRELLIS[Xiang et al. 2024]

Fig. 17. Comparison of texture normalization against FFHQ-UV[Bai et al.
2023]. No highlights are baked into our results.

related assets, such as eye color textures and geometry offset presets,
are hosted by the back-end server statically and are only loaded
on demand. Changes to these interactively modifiable features are
recorded in the database to make the result reproducible. The back-
end system is implemented using ASP.NET Core [Microsoft 2024]
and is modularized, so the system’s capabilities can be expanded
with ease. Please check our supplementary materials for the demo
video recordings and details.

5 LIMITATIONS
While we have made considerable progress towards a production-
quality system for semantic-guided generation PBR face asset, there
are aspects of our system that can be improved upon.

By sourcing our training data from diffusionmodels, we expanded
the diversity of our training data greatly. However, our method only

works for texture maps, as there is currently no controllable high-
quality large-scale generative model for face geometry. So, while
we can refine the geometry with a single-view face reconstruction
method, the diversity of the initial geometry is still limited by what
we have in the scanned dataset.

Furthermore, the invisible parts on the UV texture projected from
the frontal view portraits, generated by the diffusion model, need
to be supplemented by the scanned dataset. This requires a well-
distributed scan data. If the generated portrait has no similar labels
in the scanned data, for instance, a dark skin texture may not be
accurately completed if there’s no dark skin in the scanned data-
base. Therefore, we aim to explore a multi-view consistent texture
synthesis method that can produce a complete texture without the
need for inpainting.

Since pre-trained diffusion models are used to create the training
data, our generation model may inherit any potential biases present
in models like Stable Diffusion. Although we ensure that each at-
tribute has balanced training data through manually defined at-
tributes and distributions in data preparation, it is worth discussing
how our method might still inherit issues if the pre-trained models
do not express certain attributes diversely. Additionally, due to the
high quality of the generated faces, misuse and privacy management
are also significant challenges.

6 CONCLUSION
We have introduced a novel 3D face generative model that allows
for semantic control and creates high-quality face models, which is
unprecedented in 3DMM of human face. The main contributions
that realize our model is a specifically designed normalization net-
work and a disentangled generator that are able to utilize not only
the high-quality scanned models but also in-the-wild face models
that are vast in quantity and semantic information. Experiments
have demonstrated that our model can effectively normalize faces
from arbitrary lighting conditions, generate novel face and perform

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: April 2025.



1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

Bringing Diversity from Diffusion Models to Semantic-Guided Face Asset Generation • 15

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

Excellent

Good

Average

Poor

Very Poor

18.39%

48.08%

24.14%

7.85%

1.53%

11.49%

33.91%

34.29%

15.71%

4.6%

2.3%

18.39%

31.61%

25.48%

22.22%

Ours
DreamFace
Describe3D

(a) Description Consistency

Excellent

Good

Average

Poor

Very Poor

19.54%

50.57%

23.75%

4.6%

1.53%

5.75%

25.29%

36.21%

17.82%

14.94%

0.19%

5.56%

14.75%

33.52%

45.98%

Ours
DreamFace
Describe3D

(b) Photorealism

Fig. 18. Comparison of different methods across various categories

attribute manipulations on the generated 3D face in multiple seman-
tic directions. We believe that the progress our system achieves has
great potential use in many applications, including VFX production,
customized digital avatars and the generation of synthetic training
data for other fundamental computer vision research.

Fig. 19. Interface showcasing the avatar creation web application. Users
setup features to generate and refine the facial structure and features of
the avatar through an interactive and intuitive graphical representation.
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